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The following-topics.weze-researched:Q -|

1) Spectral methods for time dependent partial differential equations.

The theory of spectral methods for time dependent partial equat ins is

reviewed. When the domain is periodic, Fourier methods are iresented

while for nonperiodic problems both Chebyshev and Legendr methods are

discussed. The theory is presented for both hyperb-'lic and parabolic

systems using both Galerkin and collocation procedures. While most of the

review considers problems with cQuatant coefficients, the extension to

nonlinear problems isa-Nlo discussed. Some results for problems with

-a r 'epresented. (See Appendix 1)

2) Spectral methods for compressible flow problems. . "

In this article we revidw recent results concerning numerical simulation

of shock waves using spectral methods. We discuss shock fitting

techniques as well as shock capturing techniques with finite difference

artificial viscosity. We also discuss the notion of the information

contained in the numerical results obtained by spectral methods and show

how this information can be recovered. (See Appendix 2)
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3) Recovering pointwise values of discontinuous data within spectral

accuracy.

J
We show )oW pointwise values of a function, f(x), can be accurately

recoveret either from its spectral or pseudospectral approximations, so

that the accuracy solely depends on the local smoothness of f in the
/

neig1borhood of the point x. Most notably, given the equidistant
//

function grid values, its intermediate point values are recovered within

spectral accuracy, despite the possible presence of discontinuities

scattered in the domain. (Recall that the usual spectral convergence rate

decelerates otherwise to first order, throughout.)

To this end we employ a highly oscillatory smoothing kernel in

contrast to the more standard positive unit-mass mollifers.

In particular, post-processing of a stable Fourier method applied to

hyperbolic equations with discontinuous data recovers the exact solution

modulo a spectrally small error. Numerical examples are presented. (See

Appendix 3)

4) Information content in spectral calculations.

Spectral solutions of hyperbolic partial differential equations induce a

Gibbs phenomenon near local discontinuities or strong gradients.

A procedure is presented for extracting the piecewise smooth behavior

of the solution out of the oscillatory numerical solution data. The

procedure is developed from the theory of linear partial differential

equations. Its application to a non-linear system (the two-dimensional

Euler equations of gas dynamics) is shown to be efficacious for the

particular situation. (See Appendix 4)



5) Spectral methods for discontinuous problems.

We show that spectral methods yield high-order accuracy.even when applied

to problems with discontinuities, though Ot in the sense of pointwise

accuracy. Two different procedures arcr presented which recover pointwise

accurate approximations from-the spectral calculations. (See Appendix 5)

'6) Stability and Lyapunov stability of dynamical systems: a differential

approach and a numerical method. A .

A set of differential equations for the eigenvalues and eigenvectors of

the stability matrix of a dynamical system, as well as for the Lyapunov

exponents and the corresponding eigenvectors is derived. The rate of

convergence of the Lyapunov eigenvectors is shown to be exponential. The

eigenvectors of the stability matrix can be grouped into sets, each

spanning a subspace which converges at an exponential rate. It is

demonstrated that, generically, the real parts of the eigenvalues of the

stability matrix equal the corresponding Lyapunov exponents. This

statement has been tested numerically. The values of the Lyapunov

exponents, u,, are shown to be related to the corresponding finite time

values of the Lyapunov exponents (e.g. those deduced from a finite time

numerical simulation), ,ui(t), by: Ui(t) = i + i t . The

bf's are constants and E (t) are "noise" terms of zero mean. This

observation leads to a method of extrapolation, which has been used to

predict Lyapunov exponents from a finite amount of data. It is shown that

the use of the standard (numerical) methods to compute Lyapunov exponents
ai

introduces an error i in the value of ui(t), where the ai's 4re



constants. Thus the standard method has a rate of convergence which is

the same as that of the exact 11i(t)'s. Finally, we have shown how one

can compute the eigenvectors associated with each of the eigenvalues of

the stability matrix as well as the Lyapunov eigenvectors. (See Appendix

6)

7) Boundary conditions for incompressible flows. . .

In this paper, we have analyzed the effect of boundary conditions on

incompressible flows. We have explained and analyzed a numerical boundary

layer of thickness V-" that appears in many formulations of

incompressible flow problems and we have explained techniques for the

development of high-order methods.

For first- or second-order methods, we recommend the use of splitting

methods in the form (4.1) - (4.5) or (7.1) - (7.5) with the tangential-

derivative boundary conditions (7.16) or the modified velocity boundary

conditions (7.28). To achieve higher-order accuracy, we may employ either

the extrapolation methods outlined in Sec. 6 or, perhaps even better, we

may use schemes of the form (1,11) with high-order pressure boundary

conditions of the form (7.23) or iterative conditions of the form (7.25)

[with only a few iterations per time step].

In this paper, we have shown that we can characterize methods for the

solution of incompressible flow problems as belonging to either parabolic

or elliptic type with regard to the determination of the pressure field.

The elliptic schemes typically have smaller errors in the divergence

field, with the errors decaying exponentially away from the boundaries of



the computational domain. On the other hand, the parabolic schemes have

smooth solutions, without numerical boundary layers, but care should be

exercised with respect to the boundary conditions in order tha initial

divergence errors be eliminated. This analysis explains why 'elliptic'

schemes, like that introduced by Harlow & Welch (1965) have been found to

be more accurate than parabolic schemes.

We have also shown, using Weyl's lemma for the decomposition of a

flow into its solenoidal and irrotational components, that it is possible

to derive accurate boundary conditions for the pressure that involve only

the tangential derivative of the boundary vorticity. This form of the

boundary condition tends to minimize the effects of numerical boundary

layers induced by splitting methods. (See Appendix 7)
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